One of the most puzzling astronomical discoveries of the last decade has just gotten a little bit clearer. Astronomers still don't know what's producing the brief, powerful bursts of radio waves they've been detecting, but for the first time, they've been able to see where one of them is coming from.
Astronomers
first detected
But
Evan Keane
So they piped data from Australia's
CSIRO Parkes radio telescope
"I was in South Africa when it happened," Keane says. He'd been in a long engineering meeting the day before and had been planning to sleep in that Saturday morning. "But of course, my phone started going crazy in the morning" with people calling to say the computer had found an FRB. They called it FRB 150418, for the day it was found.
Keane and his colleagues immediately alerted a network of telescopes they had assembled around the world to help pinpoint and characterize an FRB if and when they found one.
The
Australia Telescope Compact Array
Then, the Japanese
Subaru telescope
"There's only one thing there," Keane says, "and it's a galaxy, an eliptical galaxy."
An elliptical galaxy 6 billion light years away.
Unfortunately, Keane says, knowing that doesn't explain what's generating the massive pulse of radio energy.
But knowing how far away that object is lets you do some extremely interesting calculations. That's because the different frequencies that make up the radio burst don't all arrive at the exact same time. The longer frequencies are delayed.
"And the reason for that delay is the stuff that the signal has gone through — the particles and dust in the intervening space," Keane says. And by measuring the delay, you can measure how many particles there are between us and the galaxy.
And knowing how many particles there are between are between here and a galaxy 6 billion light years away gives you an estimate of how much that slice (or cylinder, if you'd prefer) of the universe weighs.
Although what's generating these FRBs is still a mystery, the new discovery gives some hints. Keane says the galaxy where the FRB originated is comprised mostly of older stars. "Our conclusion [is] that FRB 150418 is likely to be from a one-off event in an older stellar population," he and his colleagues write in
the journal Nature
Keane's organization, the Square Kilometer Array Organization, is designing a giant radio telescope that should be able to detect lots more of these FRBs. Maybe enough to figure what's making them.
Copyright 2016 NPR. To see more, visit
http://www.npr.org/