Researchers are increasingly turning to nature for inspiration for new drugs. One example is
Prialt
Prialt hasn't become a widely used drug because it's hard to administer.
Mandë Holford
Holford is an associate professor of chemical biology at
Hunter College
"I started out with this love for peptides," Holford says, then laughs. "Love! Sounds weird to say you love peptides out loud."
When Holford was in graduate school, a visiting scientist named
Toto Olivera
"He has this amazing video of a snail eating a fish," she says, "and it just looked so crazy." National Geographic has a similar video posted on YouTube.
Holford was captivated. How could a snail eat a fish? The secret, she learned, was a powerful venom the snail uses to paralyze the fish.
"It's amazing," Holford says.
Now, it turns out this venom is made of a hundred or more different peptides, most of them harmful to people.
"If I were to inject you with the complete cocktail of cone snail venom, it would kill you," says Holford. But one particular peptide in the venom is able to do something medically useful: It dramatically reduces pain. In 2004, the FDA approved the drug Prialt, made from a synthetic form of this particular peptide. Right now, Prialt is only used in cases of extreme, unrelenting pain because there's a major problem with the drug.
"It doesn't cross the blood-brain barrier," Holford explains.
The
blood-brain barrier
So, at this point, the drug can only be administered via an injection directly into the spinal column — which isn't very convenient for patient or doctor.
Holford has been looking for an easier way in. "We're using what I call our 'Trojan horse strategy,' in which we put the peptide inside of a carrier — which is called, in this case, a viral nanocontainer," she says. It's a tiny receptacle made from proteins found in viruses.
"Then," Holford explains, "we sort of shuttle it across the blood-brain barrier, using another peptide, which is a cell-penetrating peptide, which can cut through all sorts of membranes — including the blood-brain barrier."
As Holford and her Hunter College colleague
Prachi Anand
But there's still a lot to do before Holford and her colleagues will know if that's really possible.
"The next step is to figure out if the peptide is still functional once we get it across the blood-brain barrier," says Holford. In other words, whether it still works as a painkiller once it's delivered with Holford's Trojan horse.
I'll report back when they've figured that out.
Copyright 2016 NPR. To see more, visit
http://www.npr.org/