NASA has sent rovers to explore Mars before. But three words explain what makes this latest mission to Mars so different: location, location, location.
The rover Curiosity is slated to land late Sunday in Gale Crater, near the base of a 3-mile-high mountain with layers like the Grand Canyon. Scientists think those rocks could harbor secrets about the history of water — and life — on the Red Planet.
"It's got a giant mountain in the middle of the crater. There are lots of exposed layers [of clay and minerals]," says
Samuel Kounaves
Water is essential for life on Earth, so where there's evidence of ancient water on Mars, researchers think they might also find clues to ancient life. "[Curiosity] is not going to be looking for life directly, but it's going to be looking for past habitability," Kounaves says. "We're looking to see if the elements required for life are there."
Curiosity carries 10 experiment stations. One, called
Sample Analysis at Mars
Geologist
David Blake
Blake is in charge of a chemistry and mineralogy instrument on the rover called CheMin. It is charged with identifying the minerals in a rock sample. Earlier expeditions have found minerals like olivine, which form in lava, and jarosite, which precipitates out of water. The minerals reflect the Mars environment at the time the rocks were formed.
"If you look for a billion-year-old rock on the Earth, you won't find it," Blake says. That's because Earth is still geologically active, and old rocks are being buried.
But on Mars, very old rocks are still sitting on the surface. "So we can go to Mars and look at rocks that are probably very similar to the early Earth and tell a story about both planets."
Scientists also will be evaluating the chemical composition of the Martian landscape using color photography.
"We use color as a way to understand, in a relatively simple sense, the geology and the composition and the mineral content of the rocks and soils there," says
Jim Bell
"If we see a black rock, it's probably a fresh-from-Mars volcanic material, just like you'd find in Hawaii or Iceland," Bell says. This visual analysis, though not completely reliable, is a simple and energy-efficient way to classify the minerals seen in the Martian soil, he adds.
It's not all work and no play, however, for Curiosity's high-resolution cameras. "One of the things we do with these color cameras is the same thing that you or another tourist would do with their cellphone camera: Just look around and take beautiful color pictures, and soak up the landscape," Bell says.
Curiosity's landing will be a nail-biter; engineers had to devise a high-risk landing system that lowers Curiosity to the ground with cables from a hovering sky crane. (Check out our
report
Copyright 2016 NPR. To see more, visit
http://www.npr.org/